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Abstract—The integral method has been applied to determine the downstream influence of homo-
geneous mass transfer in the stagnation region of a blunt, axisymmetric body under hypersonic flight
conditions. Exponential profiles are employed in an attempt to eliminate singularities which have
appeared in previous analyses utilizing polynomial profiles. The analysis is performed by introducing
an additional differential equation, obtained by a second integration of the momentum equation.
When used in conjunction with the von Karmén integral relations for the momentum and energy equa-
tions a system of first-order differential equations result which are solved by numerical means on a
digital computer. The matching conditions at the junction of the permeable-impermeable surface
provide the initial conditions for the integration.

The results indicate that the singularities occurring in the application of the integral method using
polynomial profiles do not arise in the present analysis. The heat-transfer rates obtained are com-
pared to experimental data and are found to predict the downstream effect of the mass injection
reasonably well. The effect, on the heat-transfer rates, of varying the coolant temperature and the
injection area are also investigated. It is found that decreasing the coolant temperature or increasing
the injection area result in a decrease in the peak heat rate and over-all heat transferred to the body.
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w = hy/hs, impermeable surface
enthalpy ratio;

X, surface co-ordinate;

by = x/R,, non-dimensionalized surface

co-ordinate;
v, co-ordinate normal to the surface;

= di/d¥, non-dimensional velocity
gradient along the surface;
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* u u
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o HUe ue,
thickness;
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ratio;
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A, parameter in velocity and enthalpy
profiles;
A = ANR} Rops>:
s viscosity coefficient;
Py mass density;
a, Prandtl number;
T = J l{ de;
o Ye
D, modified momentum thickness defined

by equation (16};

D*, modified displacement thickness de-
fined by equation (17);
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i = (v @ dr;

p* = [ @*dr;

“u hy .
0 = J (1 — »—) dt, energy thick-
o Ue hs,
ness.
Subscripts

e, conditions external to the boundary
layer;

i, conditions evaluated at the termina-
tion of the injection region;

S, denotes stagnation conditions;

Se, stagnation conditions external to the

boundary layer;
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T, denotes maximum length of surface
influenced by the coolant;

W, conditions evaluated at the surface,
y =20

) quantities non-dimensionalized with
respect to external conditions;

) = o/ot, denotes partial differentiation

with respect to the transformed

normal co-ordinate;

= 0/dx denotes partial differentiation

with respect to the surface co-ordinate.
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I. INTRODUCTION
MASS-TRANSFER cooling has been shown to
provide an efficient means of reducing the surface
temperature of high-speed flight vehicles to
tolerable structural limits. Since the injection
region is porous, its structural characteristics
are in general inferior to those of an impermeabie
surface; as a result, it is desirable to localize the
region in which the coolant is injected into the
stream. From the viewpoint of aerodynamic
heating, the regions of peak heat rate can be
effectively reduced by the insertion of a porous
strip in the required location. For blunt-nosed
hypersonic bodies, the most efficient location
for the injection region is at the forward stagna-
tion point. The heat transfer is thereby reduced
in the region corresponding to maximum
heating; moreover, the favorable effect of the
injected gas will persist for some distance down-
stream of the injection region. This persistence
is advantageous from the viewpoint of coolant
economy as well as over-all effectiveness.

The problem considered here is the determina-
tion of the boundary-layer characteristics down-
stream of the region of mass transfer. The
effects of variation of coolant temperature and
spatial extent of mass injection are also studied.
As a fundamental hypersonic body, a hemisphere
cylinder is used for the analysis. The imperme-
able surface temperature, coolant temperature,
and injection area for one computed case are
chosen to correspond to an experimental model
for which data on the downstream surface are
available.

Although there is extensive literature for
the determination of the laminar boundary layer
on a permeable surface, similar information is
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relatively scarce for the impermeable surface
downstream of the mass-transfer region. For
the porous region, Morduchow [1] has studied
the case of homogeneous injection over a surface
with arbitrary pressure gradient by means of the
integral method. Livingood and Donoughe [2]
present a summary of transpiration cooling
problems based on similar solutions. These
solutions are applicable to wedge-type flows
over two-dimensional surfaces, and include
solutions valid over a range of Prandt! numbers
and for variable transport properties. Howe and
Mersman [3] extend these solutions to include the
stagnation region of an axially symmetric body.

Libby [4] also treats the homogeneous mass-
transfer problem for an axisymmetric stagnation
region with large rates of injection. Solutions
are presented for a wide variation of injection
rates, extending well into the regime in which
the heat transfer to the porous region is identi-
cally zero. At present, these are the only results
adaptable to the problem considered herein.
Since most of the other literature concerning
the porous region has its interest directed only
to the reduction of heat transfer on the injection
region itself, relatively low rates of mass transfer
were used. To attain a large reduction down-
stream of the transpiration cooled portion,
however, much higher rates of mass transfer are
expected to be applicable.

Consider now the downstream region; Howe
[5] has solved the problem of a flat plate with
homogeneous upstream injection by means of a
finite-difference method and compared the
results with those of Libby and Pallone [6] and
of Rubesin and Inouye [7]. Both [6] and [7] are
based on the integral method, the differences
being mainly in the method by which the
injection profiles and impermeable region pro-
files are joined. In [6] additional parameters were
used in the profiles to insure the continuity of
mass, momentum and energy in the boundary
layer. These parameters, however, were assumed
to be constant instead of functions of the surface
co-ordinate, and, as a result, the analysis is not
valid when the distance from the injection region
1s large. In [7] the profiles were matched by as-
suming the shear stress and boundary-layer
thickness to be continuous at the junction. In
comparing the results of [6] and [7],only the over-

all effects of the two methods could be evaluated ;
there is no way of determining the validity of the
individual assumptions considered. Chung [8]
treats the problem of downstream influence for
low injection rates over a blunt two-dimensional
or axisymmetric body utilizing the hypersonic
approximations of Lees [9]. The solution
presented corresponds to the “cold wall”
condition wherein the pressure gradient term
in the momentum equation is neglected. The
boundary-layer profiles and matching conditions
are the same as those of [7]. Pallone [10] presents
a method which involves a more complex
system of equations but provides more accurate
results than the usual integral method. It
consists of dividing the boundary layer into
strips and integrating the pertinent equations
from the wall to the edge of each strip. The
results of this analysis for the downstream
influence of mass transfer on a flat plate are
substantially the same as those of [5].

In this report, the effects on the boundary-
layer of injecting a gas in the stagnation region
of a blunt, axisymmetric body are considered.
The profiles of Libby [4] are utilized on the
porous region while the impermeable region is
treated by application of the integral method
using exponential profiles.

Previous experience with polynomial profiles
in flows with favorable pressure gradient and
moderate rates of heat transfer indicated the
appearance of singularities in the solution of the
resulting integral equations of momentum and
energy (cf. [11] and [12]). These singularities
arise when the density at the wall is approxi-
mately equal to that in the external stream, and
do not appear when ‘“cold wall” conditions
exist; moreover, the singularities correspond to
non-monotonic velocity profiles. In an attempt
to circumvent the possible appearance of these
singularities, exponential profiles were utilized
rather than the more usual polynomials. Lew
[13] found that, for large rates of suction in a
compressible boundary layer over a flat plate,
polynomial profiles led to singularities which
could beavoided by theuse of exponential profiles.
It should be noted that, if the actual boundary
layer behavior corresponds to non-monotonic
profiles (e.g. [2] and [14]), the exponential profiles
can represent them satisfactorily.
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The applicability of the integral method in
analysing a laminar hypersonic boundary layer
over a blunt body has been indicated by Libby
[12]. In order to determine the accuracy that
could be expected in the prediction of heat
transfer with mass injection, the method of the
present study using exponential profiles was
applied under the same conditions as [12].
A completely impermeable body was used and
the results of the present analysis were com-
pared to those of [12] as well as those of more
exact methods. Fay and Riddell [15] have ob-
tained an accurate relation for the stagnation-
point heat transfer and Lees [9] has presented a
method for obtaining the corresponding surface
distribution. In [9] the assumptions utilized are
the existence of a cold wall and a constant
value of the density—viscosity ratio across the
boundary layer. In previous applications of the
integral method using polynomial profiles, this
latter assumption appears to be unavoidable.
Use of exponential profiles, however, seems to
circumvent this obstacle and permit the product
pit to remain variable in the analysis. Kemp
et al. [16] extended the analysis of [15] under the
assumptions of equilibrium in the boundary
layer and local similarity. This solution, when
compared with [9] indicated that the results of
Lees were very accurate, notwithstanding the
assumption of constant pu. As a result, the
present analysis will be compared to the surface
distribution predicted by Lees with the stagna-
tion-point value taken to be that of Fay and
Riddell. This procedure has been found to be in
good agreement with experiment for a wide
variety of body geometries (cf. [17] and
[18]).

After the relative accuracy has been thus
established, the basic problem of determining
the downstream effect of stagnation-point mass
transfer is treated. This reduces to solving a
system of simultaneous algebraic and differential
equations subject to specified initial conditions.
The differential equations resulting from the
integral representation of the momentum and
energy equations are of first order, therefore
they are readily solved by numerical means.
A modified Runge-Kutta method [19] was used
and the equations were subsequently solved on a
Bendix G-15 digital computer.
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II. BASIC EQUATIONS AND DEVELOPMENT
OF METHOD

The equations used in the analysis describe
the laminar compressible boundary-layer flow
over an axisymmetric unyawed, blunt body.
The fluid is assumed to be in thermodynamic
equilibrium, with a Lewis number of unity. The
Prandtl number is constant, although its value
can be different from unity. Utilizing the
boundary conditions for the impermeable surface
and the continuity equation to eliminate the
normal component of velocity, the momentum
and energy equations can be integrated across
the boundary layer and result in the standard
form of the von Kdrmin integral equations.
Since the profiles to be used in the solution of
these equations are exponential, the integration
limit extends to infinity and the usual assump-
tion of a single boundary-layer thickness is
unnecessary.

Using a modified Dorodnitzin transformation
of the co-ordinate normal to the surface, the
following form of the momentum and energy
equations result (cf. [6] and [12]):

o d 0 due
ax + Qa}ln (peper) + ” (He +2) dx
_ el de )
Pellefte
de d e[ Clhs/hs) th
d} + Qd} In (Pe#euer) - MNW (2)

where the transformed normal co-ordinate ¢ is
related to the physical co-ordinate y by

_ PB4
Pelte

dt 3)

and the integral thicknesses in the 7-plane are as
follows:

momentum thickness

© y u
0= — |1 — ~) ds, 4
[Cafi- @
displacement thickness
| Pe_ ¥
8 = J." (P ue) dt, 5)
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energy thickness

© y hs
o= Z{1=7"}d
JO ue( hse)dt

The profiles chosen correspond to velocity
and stagnation enthalpy distributions in the
boundary layer. With the thermodynamic and
transport properties related to the local flow
variables, the equations are in a form suitable
for solution. If the degree of dissociation in the
boundary layer is small, approximate relations
can be found; these are reasonably accurate for
stagnation temperatures less than 5000°R.
These expressions relate the enthalpy, specific
heat and viscosity to the local temperature by
means of a power-law variation. This approach
has previously been used in [3, 4, 20]. Since the
profiles of [4] are used as initial conditions on
the present analysis, the exponents involved in
these relationships correspond to those of [4],
with a slight modification. In the notation of [4]
the thermodynamic and transport properties of
interest are related by

T pe_(,u)l'“
Te p \p ’

©)

In the present analysis the major region of
interest for cooling purposes is confined to the
region where the higher heat-transfer rates
prevail;t this corresponds to a region of high
external pressure or low external Mach number.
This results in the following relation between
density and stagnation enthalpy,

pe L hs

P hs
Using this in conjunction with the density—
viscosity relation, given in [4], results in

o (h)
Be h—se

and C = pﬂ/peﬂ-e == (hs/h,g‘\)n—l Where n = 07

Therefore, for a given set of profiles for the
velocity and stagnation enthalpy, the integral

t The analysis can still be applied in a region of
relatively large Mach number if the pressure gradient is
small.

thicknesses can be obtained in terms of the un-
known coefficients. These coefficients are then
determined as a function of the surface co-
ordinate x from the integral form of the basic
equations. If, as is generally the case, there are
more than two independent coefficients in the
velocity and enthalpy profiles, additional
equations must be supplied to determine
these quantities as functions of x. Various
methods of obtaining these additional equations
have been used in previous analyses. If the
boundary-layer equations in partial differential
form are successively differentiated with respect
to y and evaluated at the wall, there result
ordinary differential equations. These can be
used to relate the x-wise variation of the
additional parameters in the profiles. Alterna-
tively (cf. [21]), the boundary-layer equations
can be multiplied by u™ or by y* and integrated
from zero to infinity to form additional integral
conditions. An analysis using the velocity as the
multiplying factor has been carried out in [21],
indicating, in general, a closer approximation
to the exact solutions than those in which only
thevon Karman integral relation wasused. White-
head [22] suggests another possible method for
obtaining additional equations. This is achieved
by the successive integration of the momentum
equation. For an incompressible fluid, this
reduces to the equation resulting from the multi-
plication by the normal co-ordinate and
subsequent integration when combined with the
von Karman integral relation. Thusitis seen to be
analogous to an equation expressing the change
in the moment of momentum in the boundary
layer with respect to the surface co-ordinate of
the body.

In considering the profiles for the downstream
region, the matching conditions at the junction
of the porous surface and impermeable surface
must be investigated. As discussed in [6], at this
edge the boundary-layer equations are invalid
inasmuch as the x-wise derivatives at the surface
are infinite. However, certain integral properties
of the boundary layer are usually made con-
tinuous at ‘this station under the physically
attractive assumption that within several
boundary-layer thicknesses the boundary-layer
approximations are again valid. The questionable
validity of the boundary-layer equations at the
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edge of a porous region can be inferred from the
experimental results of [23], in conjunction with
the theoretical results of [4]. In the latter, the
boundary-layer thicknesses and profiles at the
edge of the injection region imply zero heat
transfer on the porous section. The shadow-
graphs in [23] indicate a region of large density
variation in the direction normal to the surface.
This is explicable in terms of the profiles of [4],
and indicates roughly the boundary-layer thick-
ness. It should be noted that in a downstream
distance of approximately two boundasy-layer
thicknesses the heat transfer determined experi-
mentally is found to be relatively large. Such a
large x-wise gradient would not appear to be
consistent with the boundary-layer approxima-
tions.

Consider now the previous literature with
respect to the matching conditions. In [7] the
boundary-layer thickness and slope and
curvature of the velocity profile at the wall are
made continuous at the surface junction. Ref.
[6] allows a discontinuity in the wall shear stress
but specifies a continuous boundary-layer thick-
ness as well as total mass, momentum and
energy in the layer. In the finite difference
analysis of [5], it is unnecessary to apply any of
these assumptions explicitly. Those that are
directly related to the differential equations
(e.g. the wall curvature of the velocity profile)
are obtained inherently as a result of the
analysis. The results indicate that the skin
friction and heat transfer permitted discon-
tinuities at the interface (as stated, the dis-
continuous heat transfer results from the fluid
motion and disregards the physical phenomenon
of conduction within the body). In the present
analysis the junction was treated in a manner
similar to that of [6]. The specification of the
continuity of mass, momentum, energy and
boundary-layer thickness requires four in-
dependent parameters to be introduced into
the velocity and enthalpy profiles. Moreover, in
order to permit specification of arbitrary initial
conditions, these must be governed by two
differential equations in addition to the usual
von Karmén integral relations [equations (1)
and (2)].

The profiles used in this analysis, therefore,
become
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u {
o= _a—t/A _ .
S=l—c [1 K, /\] (7)

[

s

el — (1= W) et

hs,
t 1\ 2
x [1+1<3/\+1<:(§)]. (®)

The profiles involve four functions of the
independent variable x, namely, A, X, K, and
K,. All derivatives of the profiles vanish at
infinity; thus it is not necessary to include the
large number of terms wusually required in
polynomial profiles to satisfy these conditions.
It is also of interest to note that the effective
thicknesses of the velocity and thermal layers
can be different with no difficulty; this is in
contradistinction to the difficulties encountered
with-polynomial profiles if different thicknesses
are employed in the two layers. For a Prandtl
number of unity and zero pressure gradient, the
parameters in equations (7) and (8) can be
related by the Crocco integral; for all other
cases they are independent quantities and must
be determined from the differential equations.

With the profiles of equations (7) and (8), the
integral thicknesses are readily obtained and
result in the following:

§ = Al')2, C)]
8% = A[W — Ky — (1 — WK, + 2K,)], (10)
=M —W)a; + @, Ky + a5 K,].  (11)

Consider in detail the matching conditions
which result in the initial values of A, K;. K, and
K.

The mass flow in the boundary layer can be
obtained by integrating pu across the layer.
As a result of the use of exponential profiles,
however, the range of integration is infinite,
resulting in an infinite mass flow. It can be
shown that if the difference in the mass in a
layer of uniform velocity and density and the
actual mass in the boundary layer is considered,
a finite value is obtained which is proportional
to the displacement thickness. The corresponding
difference in momentum is proportional to # and
the difference in energy is proportional to 2.
From this it is seen that if the mass, momentum
and energy in the boundary layer are to be



DOWNSTREAM INFLUENCE OF MASS TRANSFER IN A STAGNATION REGION 843

continuous, all three integral thicknesses must
be continuous at the interface.

The boundary-layer thickness can be made
continuous by specifying a value of u/u,. at the
outer edge, since, for the exponential profiles, the
velocity ratio is unity only at an infinite distance
from the wall. In the present analysis, since the
velocity profile is not expected to be monotonic
in all cases, the boundary-layer edge is defined
as the point at which

U
{ — =
Ue

= 0-02.

8

(12)

For those cases in which velocity overshoot
occurs, the above relation is understood to
designate the outermost point satisfied by the
equality. The boundary-layer thickness at the
junction thus provides a relation between X
and A which, when used in conjunction with the
integral thicknesses, determines the initial values
for all the parameters. Therefore, with known
profiles at the termination of the porous region
(as obtained from [4], for example) the initial
values of the variable coefficients in the velocity
and enthalpy profiles can be determined. For
the extremely large rates of injection of interest
in the present analysis, however, it was found
that it was not possible to satisfy the conditions
simultaneously on the boundary-layer thickness
and the integral thicknesses. This is a result of
two separate effects; firstly, the large injection
rates increase the boundary-layer thickness and
integral thicknesses by a few orders of magnitude
with respect to the zero injection values; and
secondly, the relatively simple profiles used in
the present analysis have only a limited flexibility
with respect to variation of the profile para-
meters. The combination of these effects made
it possible to satisfy all the aforementioned
matching conditions only at very small injection
rates.

For the results presented herein, a different
method was used to determine the initial values.
It was found that either the integral thicknesses
or the boundary-layer thickness could be
matched at the high injection rates, but not both.
The boundary-layer thickness was chosen as the
more desirable matching condition, since all the
integral thicknesses include it as a multiplying

factor. The other matching conditions are then
determined from ratios of the integral thick-
nesses, which are independent of the boundary-
layer thickness. These ratios are the form factor,
H, = §*/8, and shape factor, 4 = £/6. This
system appears to be more reasonable than the
alternate method of satisfying the integral
thicknesses and not the boundary-layer thick-
ness. Examination of the momentum thickness
[equation (9)], for example, indicates the
dependence of 6 on two quantities, A and I,
where A is proportional to the boundary-layer
thickness and I' is a quadratic function of the
coefficient K;. For real values of K, therefore,
1" has an upper bound. This limitation in the
variation of I" restricts the values of 8 attainable
for a given A. Similar reasoning applies to 6* and
£2, wherein the terms in the brackets [equations
(10)and (11)] can vary only within specified limits.

. In order to insure that the same matching

conditions can be applied for any combination
of integral thicknesses, the form factor and shape
factor are utilized. The variation of these para-
meters with injection rate is considerably less
than the corresponding variation in integral
thicknesses, since the effect of the large change
in boundary-layer thickness is removed. The
boundary-layer thickness itself is correctly
represented since it is matched, independent of
the other thicknesses.

The number of matching conditions, therefore,
is reduced to three, and only three differential
equations are necessary. The fourth variable is
determined by satisfying the energy equationt
evaluated at the wall. This results in the
following:

hs 'hs
[C‘ (z;)t +c (;;;)”

u\? #
Cl-— -2 =
™ (3‘3)3 (G ) hsJ w 0
which reduces to a relation between the para-
meters in the enthalpy profile (K, and K,) when

t The equation usually utilized in this connection is
the momentum equation; however, the same difficulties
arise in attempting to satisfy this relation as in the
matching conditions at the junction. The energy equation
evaluated at the surface leads to consistent results and is
thus employed for the fourth equation.
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either o = 1 or (u3/hs,) <€ 1. In terms of these
variables
(1 —m(1 —W)

K,=K;—05—-—- W (1 — K3)% (13)

Consider now the derivation of the remaining
differential equation. The basic form of the
momentum equation is integrated as in the von
Kdarman integral approach. In this case, however,
the upper limit is left in terms of the normal
co-ordinate y instead of being infinite. After
integrating by parts and regrouping terms, the
following equation is obtained:

IR P Y PR T
e [ I Pl R

, due [ (¥ ulv¥ u
T He g% [Jo pedy — uejo Pa;dJ’}
__Hé}

LU ¥ u)d . 8u)
"”“(Jm Ll VT ),
(14)

If there are defined new functions analogous to
the displacement and momentum thickness in
form but with their dependence on the trans-
formed variable ¢ retained, equation (14)
becomes

1d .
¥ dx [ pepretizr @] + Pe#eueuez(p* - PeP«euzTT Tt

=pu ,[C(ut)w - Cut] (15)

ou

where

2 T 2

cb:ﬁj i’dr—J (1) dt (16)
Ue OUe 0 Ue

t hs u (tu
Q* = | “dr——| —dt 17
johs, uejo Ue ( )

tu

=| —d¢ 18
| (18)

Now, if equation (15) is integrated from ¢ =0
to <o, there results

dy
d

X

-l

(H + 2)du,
Ue H;

d
+ 4 g 10 (poser) + ¥

Trg At =

ps,
Pell»euejo [(Crit)w — Creg] dt
19
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where
b= Jo ddi 20)
g = [ o dr @1
H = {*¢. (22)

The new thickness s thus becomes equivalent
to the moment of momentum in the trans-
formed plane, x, t. As pointed out by Whitehead
[22] for an incompressible flow, ¢ represents
the actual moment of momentum in the
boundary layer and equation (19) is identical to
that obtained if the original momentum equation
were multiplied by the y co-ordinate and
integrated directly. The quantity / was intro-
duced as a modified form factor. The final equa-
tion in this form bears a resemblance to the von
Karmén integral relation [equation (1)], except
for the addition of one term. In performing the
required integrations to obtain ¢, *, etc., it is
noted that certain terms in the expressions
diverge when evaluated at the upper limit of
integration. If, however, these terms are grouped
together, it will be observed that they disappear
identically if the von Kdrmdn integral relation is
satisfied. It should also be noted that in the
integral on the right-hand side of the equation.
(the product of the density-viscosity ratio and
the normal velocity derivative) can be integrated
in closed form only if n == 1-0. Since the value
of n was set equal to 0-7 to be consistent with
the results of [4], this integral was evaluated
numerically in each step of the x-wise integration
along the surface by using the values of the
dependent variables existing at the preceding
value of x. Owing to the relatively small x-wise
variation of the variables K;, K, and K; for the
step size utilized, this method gives an accurate
representation of this integral.

Using the profiles given by equations (7) and
(8), therefore, one obtains the following non-
dimensional equation from equation (19):

d | a5,,dK X
G iR wa:{[as — 4a,
— (1 — w1+ 2K; + 6K2)]a(—i%ln i

d I
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The von Kdrmin integral relations for the
momentum and the energy equations can also
be reduced to a similar form and result in the
following set of differential equations:

d 4w + Ky
Lon-a+ ik '"”{”“m‘“

20, <, 4K, 2¢, . dK,
2 2 2"
d,(AH Pl T l?\ i

oW1k o d

Py ln( ). (25)

A complete set of equations now exists for the
determination of the boundary-layer charac-
teristics downstream of a mass-transfer region.
Equations(23-25)represent a set of simuitaneous,
first-order differential equations in the variables
Ky, K3 and A The initial values of these para-
meters are specified by the aforementioned
conditions on the continuity of boundary-layer
thickness, form factor and shape factor. The
additional parameter in the enthalpy profile X,
is related to the above variables by the energy
equation evaluated at the wall [equation (13)].
Therefore, the equations can be solved by
numerical integration by utilizing the method
of [19] with the appropriate initial values. This
integration was performed on the Bendix G-15
digital computer. Immediately downstream of
the junction the step size used was extremely
small (4% = 0-001) owing to the large variationin
boundary-layer characteristics that occurs there,
This was increased gradually to a step size of
0-1 on the cylindrical portion of the body.

IIt. NUMERICAL COMPUTATIONS AND
DISCUSSION OF RESULTS

As stated previously, the solution for a
completely impermeable body was determined
first to establish the applicability of the method.
The analysis is now divided into two parts. The
stagnation-point solution, which degenerates to
the problem of four simultaneous algebraic
equations, and the downstream region for which
the differential equations must be solved. The
heat-transfer results are presented in terms of a

Nusselt number and Reynolds number based on
stagnation conditions evaluated behind the
normal shock. The form of this heat-transfer
parameter permits extrapolation of the results
over a wide range of stagnation temperature
and pressure {(cf. [23]).

Consider first the stagnation-point solution;
there, the rate of change of all the integral
thicknesses is equal to zero, resulting in the
vanishing of the x-wise derivatives of the
dependent variables. Therefore, the left-hand
side of equations (23-25) drops out. The
derivatives remaining in the right-hand side of
these expressions can be evaluated directly,
since in the stagnation region of a blunt body
the velocity external to the boundary layer is a
linear function of the surface co-ordinate and the
radius can be replaced by the surface co-ordinate,
The non-dimensional velocity gradient is given
by

da
B == d—x. = (2¢3e)§
for a Newtonian pressure distribution. Therefore,
equations (23-25) are teduced to algebraic
equations which, in conjunction with equation
(13), can be solved numerically for the four
dependent variables. The results of the solution
of this set of equations is presented in Fig. 1.
For the Nusselt and Reynolds numbers defined
by

NNu

(hs, — huks,

the heat-transfer parameter in terms of the non-
dimensional quantities enumerated above be-
comes

Nyvu _ W1~ Ky)
ﬁ }z% (Ps?A

This parameter is plotted in Fig. 1 as a function
of the ratio of wall to stagnation enthalpy. Also
included for comparison are the integral-
method results of [12], the cold-wall solution of
[9] and the more accurate results of [15]. It is
readily seen that the present analysis compares
favorably with the results of [15] for W > 03,
while for a low wall temperature the two
results diverge rapidly. At first glance this
appears to be a major deficiency in the present
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method; however, if the results are compared
on a different basis the importance of this
deviation appears to be slight.

The surface distribution of heat transfer with
no injection was then obtained by utilizing the
stagnation point values of the variables, K|,
K,, K; and A as initial values in the differential
equations (23-25) governing the flow over the
surface. The external flow properties were
obtained from the experimentally determined
pressure distribution of [23]. This corresponds
to the flow at a free-stream Mach number of
6-0 over a hemisphere cylinder. The pressure
distribution utilized is plotted in Fig. 2 as a
function of the non-dimensional surface co-
ordinate ¥. Various values of the wall enthalpy
ratio were chosen, the maximum being 1-35 for
the heated-wall condition and the minimum
being 0-1 which corresponds to the cold-wall
case. These distributions are presented in Fig. 3
and compared with the cold-wall prediction of
[9]. Since it has already been established that the
stagnation-point value is not too accurate at
low surface temperatures, the heat-transfer
distributions are normalized with respect to the
stagnation-point value. It is evident from Fig. 3
that the distribution is predicted fairly accurately
even though the stagnation-point value is in
error. It should also be noted that the predicted
effect of wall temperature on the heat-transfer
distribution is extremely small; this is sub-
stantiated by the experimental results of [17],
for example, where values of W as high as 0-85
were obtained in the tests.

The downstream influence of mass transfer
was then treated for the conditions correspond-
ing to the experimental results of [23]. Therein,
the injection region terminated at X; = 0-167
and the ratio of wall to stagnation enthalpy W
was equal to an average value of 0-35. The ratio
of coolant to stagnation temperature 8, was
also approximately 0-35 in all the tests. In order
to determine the initial values of the dependent
variables, the boundary-layer thickness and
integral thicknesses were obtained from the
integral-method solution of [4]. These values
are presented as a function of the non-dimen-
sional injection parameter (—f5). The similarity
parameter (N,) permitting extrapolation of the
heat-transfer results of a downstream-influence

ROBERT J. CRESCI

problem was obtained in [23] and is related to
the mass-transfer rate by

m v
Ny= e = 2in(pp) (1 — cos X)(—/f). (27)
Rops, Nr*

Therefore, for a specified injection region, 8,
and W, the thicknesses can be obtained for any
value of N,. The initial values of the variables
K, K,, K; and A are then obtained from the
simultaneous solution of the algebraic equations
(9-13). The results of the integration of the
differential equations with the appropriate
initial conditions are shown in Fig. 4 for
8, = 0-35, W = 0-35, and %; = 0-167. There is
obtained a large increase in heat transfer in the
x-wise direction from ¥ = &; and a peak local-
heat transfer which decreases and moves down-
stream as the injection rate increases. This
behavior is in qualitative agreement with the
results of [23]. It should also be noted that
there is a discontinuity in the heat-transfer rate
at &; (zero heat transfer is obtained on the
porous region, from [4], for the high rates of
injection considered here). This result was also
obtained in the finite difference solution of [5].
In order to compare quantitatively these results
with the experimental data of (23], it is more
convenient to present the variation of heat
transfer with mass transfer for a given surface
location. This is shown in Fig. 5 for surface
locations at which thermocouple data were
available. As noted previously in the stagnation-
point solution, there is a discrepancy in the heat-
transfer level; however, the variation with mass
transfer is predicted reasonably well.

Since the zero-injection, heat-transfer distri-
bution is predicted fairly well by the present
theory, and the effect of mass injection is also
reasonably accurate, this suggests a method for
determining the downstream influence of mass
transfer. It consists of multiplying the heat-
transfer rates, obtained from the present analysis,
by the ratio of the stagnation-point prediction
of [15] and the zero-injection stagnation-point
value of the present analysis. This procedure
provides a correction for the relatively inaccurate
values of the stagnation-point heat transfer
resulting at low wall temperatures.

To determine the effect of coolant temperature
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on the heat-transfer characteristics, a calculation
was performed with the same values of %; and
W but with different 8. The results for 8,, equal
to 0-10 and 0-65 are presented in Figs. 6 (a) and
(b), respectively. Comparison of these results with
those of Fig. 4, 8,, = 0-35, indicates that the
peak heat rate is decreased and moves down-
stream as the coolant temperature is decreased.
This has the same effect as increasing the mass-
transfer rate; for example, approximately the
same heat-transfer distribution results from
N; = 10 and 8, = 0-65 as from N; = 4 and
8, = 0-1. Both of these cases correspond to
the same impermeable surface temperature
(W = 0-35).

The extent of the injection region can be
varied by changing the value of ;. In addition
to the model in which the porous region ex-
tended over a semivertex angle of approximately
9-5° (%; = 0-167), there were also computed
distributions corresponding to angles of approxi-
mately 20° (f; = 0-35) and 29° (%; = 0-50).
These distributions are presented in Figs. 7 (a)
and (b), respectively. It is evident that increasing
the spatial extent of the injection region results
in lower-peak heat-transfer rates as well as
decreased over-all heat transfer to the surface.
1t should be noted that the over-all heat transfer
is effected not only by the distribution for
X > &, but is also due to the fact that for the
relatively large injection rates considered, the
heat transfer to the porous region is identically
zero. A parameter that has been previously
used (cf. {23]) to evaluate the over-all effective-
ness of a given mass-transfer system is the
effective enthalpy. This is denoted by Q and is
defined as

— I T
0= ;n‘cJ (gm, =0 — gm,) dA.

0

28)

In terms of the non-dimensional, similarity
parameters used herein, one obtains

o= 2mhs (1 — W) rr [(Nw)
Nias, 0 NgtJni=o

__ N

ﬁR*} Fdx. (29)

The effective enthalpy has been computed for
the conditions presented in Figs. 4, 6 and 7 and

is presented in Figs. 8(a) and (b). Fig. 8(a)
indicates the variation of effective enthalpy with
coolant temperature, and Fig. 8(b) shows the
effect of varying the injection area. It is seen that
for the particular case when W == 0-35 it is more
advantageous to inject a very low-temperature
fluid over a relatively small area than a fluid at
the same temperature as the impermeable
surface over a relatively large area. Both the
total heat absorbed and the peak heating value
are reduced for the same N,, for example, if
fp = 01 and x; =0167 compared with
6y = 0-65 and %; = 0-50. As the impermeable
surface temperature is decreased, however, the
relative merits of decreasing the coolant tem-
perature versus extending the injection region
may be altered.

IV. CONCLUSIONS

The integral method has been applied to
determine the downstream influence of mass
transfer in the stagnation region of a blunt body.
The analysis is performed utilizing exponential
profiles for the velocity and stagnation enthalpy
in the boundary layer. For the completely
impermeable surface, results are obtained for
both the “cold wall” condition and for a value
of the ratio of wall to stagnation enthalpy
greater than unity. The “cold wall” results are
found to compare extremely well with those of
[9]. The surface heat-transfer distribution was
found to be practically unaffected by the
variation in wall temperature; this has also been
substantiated by experimental results.

For the analysis of the downstream effects, it
was found that the specification of continuity of
boundary-layer thickness, form factor and shape
factor at the junction of the permeable and im-
permeable surface leads to consistent results
over a wide range of mass-transfer rates and
coolant temperatures. This specification pro-
vides the initial conditions for the three
differential equations. The complete set of
equations is solved numerically for various
injection rates, coolant temperatures and in-
jection areas. The profilest resulting from this

t The computed values of K, vary between 0-3 and 1-0
for all the cases presented; examination of the assumed
velocity profile indicates that positive values of K, corre-
spond to (u;’m,:,)max > 1-0; thus, the resulting profiles are
non-monotonic.
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analysis are found to exhibit the same behavior
as indicated in [11], in which a non-monotonic
variation of velocity in the boundary layer was
obtained. In contradistinction to the analysis
of [11], however, no singularities occur in the
present solutions.

The results of the present analysis under-
estimate the heat-transfer rates for low wall
temperature and overestimate them for high
wall temperatures (W > 0-5). The surface
distribution of heat transfer for zero injection is
predicted extremely well when normalized with
respect to the stagnation-point value; similarly,
the mass-transfer effects are predicted reason-
ably well when normalized with respect to the
local zero-injection heat rate.

It was found, for the same total mass injected
into the boundary layer, that either increasing
the injection area or decreasing the coolant
temperature results in lower-peak heat-transfer
rates and a decrease in the total heat absorbed
by the body.
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Résumé—La méthode intégrale est appliquée pour déterminer ’influence aval d’un transport de masse
homogene dans la région d’arrét d'un corps de révolution émoussé placé dans les conditions d’un vol
hypersonique. On utilise les profils exponentiels pour essayer d’éliminer les singularités qui se sont
révélées dans les études précédentes avec les profils en forme de polynomes. L’étude est améliorée par
Pintroduction d’une équation différentielle supplémentaire, obtenue par une seconde intégration de
I’équation de quantité¢ de mouvement. Quand on utilise cette derniére avec les relations intégrales de
Karman pour 1'énergie et 1a quantité de mouvement, il en résulte des équations différentielles du premier
ordre que 1’on résoud par des méthodes numériques sur une calculatrice. Les conditions d’égalité a la
limite de la surface perméable-imperméable fournissent les conditions initiales pour I’intégration.

Les résultats indiquent que les singularités qui interviennent dans l’application de la méthode
intégrale utilisant des profils en forme de polynomes n’apparaissent pas dans cette étude. Les taux de
transfert de chaleur obtenus sont comparés au données expérimentales et 1’on trouve qu’ ils traduisent
assez bien I'influence aval d’une injection de masse. L’effet, sur les taux de transfert de chaleur, de la
variation de température du refroidisseur et de la surface d’injection est également étudié. On trouve
que la diminution de la température du refroidisseur ou I’accroissement de la surface d’injection se

traduit par une diminution du flux de chaleur maximum et de la chaleur totale transmise au corps.

Zusammenfassung—Mit Hilfe der Integralmethode liess sich der Einfluss des homogenen Stoffiiber-
ganges im Staubereich eines stumpfen, achssymmetrischen Korpers bei Hyperschallgeschwindigkeit
auf stromabwirts auftretende Vorginge bestimmen. Um die bei Polynomprofilen fritherer Analysen
auftretenden Singularitdten zu vermeiden, wurden versuchsweise Exponentiaiprofile verwendet. Die
Analyse erfolgte mit einer zusitzlichen Differentialgleichung, die sich aus der zweiten Integration der
Bewegungsgleichung ergab. In Verbindung mit den Kédrmanschen Integralbeziehungen fiir die Bewe-
gungs- und Energiegleichungen ergibt sich ein System von Differentialgleichungen erster Ordnung,
das auf einer Digitalrechenmaschine numerisch 15sbar ist. Ubereinstimmende Bedingungen an der
Grenze durchlissige-undurchlissige Oberfliche liefern die Anfangsbedingungen fiir die Integration.

Die Ergebnisse zeigen, dass die mit Polynomprofilen bei der Integralmethode auftretenden Singu-
laritdten in der hier durchgefiihrten Analyse nicht in Erscheinung treten. Die ermittelten Daten fiir
den Wirmeiibergang werden mit experimentellen Ergebnissen verglichen und ermdglichen verhélt-
nismissig gute Aussagen iiber stromabwirts auftretende Effekte bei Stoffzugabe. Der Einfluss ver-
schiedener Kiithimitteltemperaturen und Stoffzugabeflichen auf den Wirmeiibergang wurde ebenfalls
untersucht. Eine Verkleinerung der Kiihlmitteltemperatur oder Vergrosserung der Zugabefldche
fithrt zu einer Abnahme der Wirmeiibergangsspitzen und der dem Korper insgesamt zugefithrten

Wirmemenge.

AnHOTAIMA—DB CTaTbe NIpUMEeHAETCHA WHTErpAsIbHBIE MeTO HJA ONpefeleHus BIUAHHA
OJHOPOIHOTO NMEPEHOCA MACCH B OKPECTHOCTH KPUTHYECKOU TOYKHM OCECMMMETPHYHOTO Tejla
¢ TYmoi#t HOCOBOH 4aCTHIO B yCIOBHAX MMNEP3BYKOBOTO MoJieTa. IIpuHNMaeTCH SKCIIOHEHIU A b~
HBIl TPOQHMIE AJA yUeTa HEeKOTOPHIX OCOOEHHOCTel, BOSHUKINMX B NPeAbIYIHX pelleHusx,
KOra HCMIOJIb30BANKUCE IIONMHOMHMANbHEIE NPOQMIN. AHAIM3 BHIOJHEH NyTeM BHIBOLA
TOMOIHATENLHOTO AUPPEPEHIMATIEHOTO YPAaBHEHNS, OJIYYEHHOTO BTOPUIHBIM MHTEIpHpOBa-
HHEM YPABHEHHMA KOJINYECTBA [BUMKEHMA. OTO ypaBHEHUE BMECTE ¢ WHTErPAJbHBIMM CO-
oTHONIEHMAME HapMaHa IJifg ypaBHEHNUA KOIHYECTB3 KOJMYECTBA [BUKEHHA H JHEPTUHM AaeT
cucremy muddepeHINATBHEX YPABHEHHH IIePBOr0 NOPAAKA, KOTOPbIE DEIIAIOTCA YHCIEHHO
Ha MUPPOBOM CUETHO-pellaiolleM INpuéope. YCIOBUA HA IPaHUNE MPOHALNAEMON M HEMPOHH-
naemolt MOBEPXHOCTEW ABIAKTCA HAYANbHEIMM YCIOBHAMM AJIfl WHTErPUPOBAHUA,
PesayapTaThl TOKA3HLIBAIOT, UTO B TAHHOM aHAJIN3e He BO3HUKAWT Te 0COGEHHOCTH, KOTOPHIE
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NOJYYal0TCA PN NPHMEHEHNH MHTerPANbHOIC METORA ¢ MCMONb30BARHUEM MOTMHOMEAIBHEIX
npoduieit.

Cnenano cpapHeHye IOJYYEHHHIX 3HAYGHMH MHTeHCUBHOCTH TENJI000MEHA ¢ JKCIepH-
MEeHTAaIbHEIME M HAHJeHO, YTO OHM [T BOBMOKHOCTE JOCTATOYHO XOpOIIO OIPEReInTh
BINAHNE IO HRIPABJIEHHIO IOTOKA MOABoAa Maccsl. IIpoBeieno Tarke nccieRoBanne BIUAHIA
TeMIepaTypHl OXJIanuTe]A H 06JacT BBOIa MACCH HA HHTEHCHBHOCTD TemrooOmMena. Haitneno,
4TO NOHWMKEHNE TEeMIEPATYPH OXNAZUTENA WK yBejnderue o6acTH BBOKA MACCH HOHIKAIOT
MARCHMAJIBHYIO CKODOCTH Temioo0Mena, a Tamke O0mee KOJMYECTBO TelIa, NMepefoBaeMoe

TExy .



