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Abstract-The integral method has been applied to determine the downstream influence of homo- 
geneous mass transfer in the stagnation region of a blunt, axisymmetric body under hypersonic flight 
conditions. Exponential profiles are employed in an attempt to eliminate singularities which have 
appeared in previous analyses utilizing polynomial profiles. The analysis is performed by introducing 
an additional differential equation, obtained by a second integration of the momentum equation. 
When used in conjunction with the von Kgrtin integral relations for the momentum and energy equa- 
tions a system of first-order differential equations result which are solved by numerical means on a 
digital computer. The matching conditions at the junction of the permeable-impermeable surface 
provide the initial conditions for the integration. 

The results indicate that the singularities occurring in the application of the integral method using 
polynomial profiles do not arise in the present analysis. The heat-transfer rates obtained are com- 
pared to experimental data and are found to predict the downstream effect of the mass injection 
reasonably well. The effect, on the heat-transfer rates, of varying the coolant temperature and the 
injection area are also investigated. It is found that decreasing the coolant temperature or increasing 
the injection area result in a decrease in the peak heat rate and over-all heat transferred to the body. 

4 

a2 

a3 

a4 

a5 

a6 

c 

NOMENCLATURE 

= 0.5 + 0+25K,; 
= 0.75 + 0*25K,; 
= 1.75 + 0.375K,; 
= - 0.625 + 1.25K, + 0.4375K;; 
= 1.25 + 1.25K,; 
= 0.5 - Kl - 0.5K;; 
= (PdIPek mass density-viscosity 
ratio; 
non-dimensional mass injection rate; 
= $*I#, modified form factor; 
E 6*/e, form factor; 
stagnation enthalpy; 

=;(sm (FT-l(i), d (fi)). =; 
coeffi~ient’k velo:ity profilexd$ned 
by equation (7) ; 
coefficients in enthalpy profile defined 
by equation (8); 
mass flow per unit time of injected 
gas; 
= me/RopCLsefld, mass transfer similar- 
ity parameter; 
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= qwCp&,l(ha, - h&s,, Nusselt 
number ; 

= [ PS, 4(hs,) Wd P.S.” ; 
exponent in viscosity-enthalpy ratio 
(PM = (WhsJn; 
effective enthalpy [defined by equation 
CWI; 
heat transfer per unit area per unit 
time ; 
nose radius; 
radial co-ordinate from center line of 
symmetry to surface; 
= r/R,; 
temperature; 
coolant temperature; 

=G-+QJQJ;+@;“,” 
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transformed 

velocity component parallel to sur- 
face ; 
= ueld(h,), non-dimensionalized 
velocity component parallel to the 
surface; 
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= h,lh,, impermeable 
enthalpy ratio; 

surface 

surface co-ordinate; 
= x/R,, non-dimensionalized surface 
co-ordinate; 
co-ordinate normal to the surface; 
= di?/d.V, non-dimensional velocity 
gradient along the surface; 
Z 1 - KI - @SKY; 

= 1: (I - z) dt, displacement 

thickness; 

= J’:: c (1 - :;) dt, momentum 

thickness; 
E Tto/Te, porous wall temperature 
ratio; 
= Q/9 shape factor; 
parameter in velocity and enthalpy 
profiles; 
= X&t/R,p?,,:; 
viscosity coefficient; 
mass density; 
Prandtl number; 

modified momentum thickness defined 
by equation (16); 
modified displacement thickness de- 
fined by equation (17); 

= al + azK3 + a,K,; 
= a2 + a3 + (1 - n)(l - W) 

(1 - &)lW; 
:= 0.25 + 0*2X, + @375K,; 
= pS,/pc&,, real gas parameter ; 
= J; 0 dt; 
= [; @* dr; ., ,, 

= 1: Lye (1 - 21 dt, energy thick- 

ness 

Subscripts 

e, conditions external to the boundary 
layer ; 

1, conditions evaluated at the termina- 
tion of the injection region; 

s, denotes stagnation conditions; 

Se, stagnation conditions external to the 
boundary layer ; 

T, 

w > 

(39 

( h 

( )Z 

denotes maximum length of surface 
influenced by the coolant; 
conditions evaluated at the surface, 
y =o; 

quantities non-dimensionalized with 
respect to external conditions; 
= a/at, denotes partial differentiation 
with respect to the transformed 
normal co-ordinate; 
= a/ax denotes partial differentiation 
with respect to the surface co-ordinate. 

I. INTRODUCTION 

MASS-TRANSFER cooling has been shown to 
provide an efficient means of reducing the surface 
temperature of high-speed flight vehicles to 
tolerable structural limits. Since the injection 
region is porous, its structural characteristics 
are in general inferior to those of an impermeable 
surface; as a result, it is desirable to localize the 
region in which the coolant is injected into the 
stream. From the viewpoint of aerodynamic 
heating, the regions of peak heat rate can be 
effectively reduced by the insertion of a porous 
strip in the required location. For blunt-nosed 
hypersonic bodies, the most efficient location 
for the injection region is at the forward stagna- 
tion point. The heat transfer is thereby reduced 
in the region corresponding to maximum 
heating; moreover, the favorable effect of the 
injected gas will persist for some distance down- 
stream of the injection region. This persistence 
is advantageous from the viewpoint of coolant 
economy as well as over-all effectiveness. 

The problem considered here is the determina- 
tion of the boundary-layer characteristics down- 
stream of the region of mass transfer. The 
effects of variation of coolant temperature and 
spatial extent of mass injection are also studied. 
As a fundamental hypersonic body, a hemisphere 
cylinder is used for the analysis. The imperme- 
able surface temperature, coolant temperature, 
and injection area for one computed case are 
chosen to correspond to an experimental model 
for which data on the downstream surface are 
available. 

Although there is extensive literature for 
the determination of the laminar boundary layer 
on a permeable surface, similar information is 
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relatively scarce for the impermeable surface 
downstream of the mass-transfer region. For 
the porous region, Morduchow [l] has studied 
the case of homogeneous injection over a surface 
with arbitrary pressure gradient by means of the 
integral method. Livingood and Donoughe [2] 
present a summary of transpiration cooling 
problems based on similar solutions. These 
solutions are applicable to wedge-type flows 
over two-dimensional surfaces, and include 
solutions valid over a range of Prandtl numbers 
and for variable transport properties. Howe and 
Mersman [3] extend these solutions to include the 
stagnation region of an axially symmetric body. 

Libby [4] also treats the homogeneous mass- 
transfer problem for an axisymmetric stagnation 
region with large rates of injection. Solutions 
are presented for a wide variation of injection 
rates, extending well into the regime in which 
the heat transfer to the porous region is identi- 
cally zero. At present, these are the only results 
adaptable to the problem considered herein. 
Since most of the other literature concerning 
the porous region has its interest directed only 
to the reduction of heat transfer on the injection 
region itself, relatively low rates of mass transfer 
were used. To attain a large reduction down- 
stream of the transpiration cooled portion, 
however, much higher rates of mass transfer are 
expected to be applicable. 

Consider now the downstream region; Howe 
[5] has solved the problem of a flat plate with 
homogeneous upstream injection by means of a 
finite-difference method and compared the 
results with those of Libby and Pallone [6] and 
of Rubesin and Inouye [7]. Both [6] and [7] are 
based on the integral method, the differences 
being mainly in the method by which the 
injection profiles and impermeable region pro- 
files are joined. In [6] additional parameters were 
used in the profiles to insure the continuity of 
mass, momentum and energy in the boundary 
layer. These parameters, however, were assumed 
to be constant instead of functions of the surface 
co-ordinate, and, as a result, the analysis is not 
valid when the distance from the injection region 
is large. In [7] the profiles were matched by as- 
suming the shear stress and boundary-layer 
thickness to be continuous at the junction. In 
comparing the results of [6] and [7], only the over- 

all effects of the two methods could be evaluated; 
there is no way of determining the validity of the 
individual assumptions considered. Chung [S] 
treats the problem of downstream influence for 
low injection rates over a blunt two-dimensional 
or axisymmetric body utilizing the hypersonic 
approximations of Lees [9]. The solution 
presented corresponds to the “cold wall” 
condition wherein the pressure gradient term 
in the momentum equation is neglected. The 
boundary-layer profiles and matching conditions 
are the same as those of [7]. Pallone [lo] presents 
a method which involves a more complex 
system of equations but provides more accurate 
results than the usual integral method. It 
consists of dividing the boundary layer into 
strips and integrating the pertinent equations 
from the wall to the edge of each strip. The 
results of this analysis for the downstream 
influence of mass transfer on a flat plate are 
substantially the same as those of [5]. 

In this report, the effects on the boundary- 
layer of injecting a gas in the stagnation region 
of a blunt, axisymmetric body are considered. 
The profiles of Libby [4] are utilized on the 
porous region while the impermeable region is 
treated by application of the integral method 
using exponential profiles. 

Previous experience with polynomial profiles 
in flows with favorable pressure gradient and 
moderate rates of heat transfer indicated the 
appearance of singularities in the solution of the 
resulting integral equations of momentum and 
energy (cf. [l l] and [12]). These singularities 
arise when the density at the wall is approxi- 
mately equal to that in the external stream, and 
do not appear when “cold wall” conditions 
exist; moreover, the singularities correspond to 
non-monotonic velocity profiles. In an attempt 
to circumvent the possible appearance of these 
singularities, exponential profiles were utilized 
rather than the more usual polynomials. Lew 
[13] found that, for large rates of suction in a 
compressible boundary layer over a flat plate, 
polynomial profiles led to singularities which 
could beavoided bytheuse of exponential profiles. 
It should be noted that, if the actual boundary 
layer behavior corresponds to non-monotonic 
profiles (e.g. [2] and [14]), the exponential profiles 
can represent them satisfactorily. 
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The applicability of the integral method in 
analysing a laminar hypersonic boundary layer 
over a blunt body has been indicated by Libby 
1121. In order to determine the accuracy that 
could be expected in the prediction of heat 
transfer with mass injection, the method of the 
present study using exponential profiles was 
applied under the same conditions as [12]. 
A completely impermeable body was used and 
the results of the present analysis were com- 
pared to those of [12] as well as those of more 
exact methods. Fay and Riddell [15] have ob- 
tained an accurate relation for the stagnation- 
point heat transfer and Lees [9] has presented a 
method for obtaining the corresponding surface 
distribution. In [9] the assumptions utilized are 
the existence of a cold wall and a constant 
value of the density-viscosity ratio across the 
boundary layer. In previous applications of the 
integral method using polynomial profiles, this 
latter assumption appears to be unavoidable. 
Use of exponential profiles, however, seems to 
circumvent this obstacle and permit the product 
pp to remain variable in the analysis. Kemp 
et al. [16] extended the analysis of [I 51 under the 
assumptions of equilibrium in the boundary 
layer and local similarity. This solution, when 
compared with [9] indicated that the results of 
Lees were very accurate, notwithstanding the 
assumption of constant pp. As a result, the 
present analysis will be compared to the surface 
distribution predicted by Lees with the stagna- 
tion-point value taken to be that of Fay and 
Riddell. This procedure has been found to be in 
good agreement with experiment for a wide 
variety of body geometries (cf. [17] and 
WI>. 

After the relative accuracy has been thus 
established, the basic problem of determining 
the downstream effect of stagnation-point mass 
transfer is treated. This reduces to solving a 
system of simultaneous algebraic and differential 
equations subject to specified initial conditions. 
The differential equations resulting from the 
integral representation of the momentum and 
energy equations are of first order, therefore 
they are readily solved by numerical means. 
A modified Runge-Kutta method [19] was used 
and the equations were subsequently solved on a 
Bendix G-l 5 digital computer. 

II. BASIC EQUATIONS AND DEVELOPMENT 
OF METHOD 

The equations used in the analysis describe 
the laminar compressible boundary-layer flow 
over an axisymmetric unyawed, blunt body. 
The fluid is assumed to be in thermodynamic 
equilibrium, with a Lewis number of unity. The 
Prandtl number is constant, although its value 
can be different from unity. Utilizing the 
boundary conditions for the impermeable surface 
and the continuity equation to eliminate the 
normal component of velocity, the momentum 
and energy equations can be integrated across 
the boundary layer and result in the standard 
form of the von Karman integral equations. 
Since the profiles to be used in the solution of 
these equations are exponential, the integration 
limit extends to infinity and the usual assump- 
tion of a single boundary-layer thickness is 
unnecessary. 

Using a modified Dorodnitzin transformation 
of the co-ordinate normal to the surface, the 
following form of the momentum and energy 
equations result (cf. [6] and [12]): 

where the transformed normal co-ordinate t is 
related to the physical co-ordinate y by 

dt = ;fe dy 

and the integral thicknesses in the t-plane are as 
follows : 

momentum thickness 

displacement thickness 

(4) 
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energy thickness 

The profiles chosen correspond to velocity 
and stagnation enthalpy distributions in the 
boundary layer. With the thermodynamic and 
transport properties related to the local flow 
variables, the equations are in a form suitable 
for solution. If the degree of dissociation in the 
boundary layer is small, approximate relations 
can be found; these are reasonably accurate for 
stagnation temperatures less than 5000”R. 
These expressions relate the enthalpy, specific 
heat and viscosity to the local temperature by 
means of a power-law variation. This approach 
has previously been used in [3, 4, 201. Since the 
profiles of [4] are used as initial conditions on 
the present analysis, the exponents involved in 
these relationships correspond to those of [4], 
with a slight modification. In the notation of [4] 
the thermodynamic and transport properties of 
interest are related by 

T Pe P 

-=(-I 

1.43 

T,- p pe, . 

In the present analysis the major region of 
interest for cooling purposes is confined to the 
region where the higher heat-transfer rates 
prevail;t this corresponds to a region of high 
external pressure or low external Mach number. 
This results in the following relation between 
density and stagnation enthalpy, 

Pe h, - N _. 
P - hs, 

Using this in conjunction with the density- 
viscosity relation, given in [4], results in 

P h,” _N 
CLe- Ge ( > 

and C = pp/pepe = (hs/h,Jn-l where n = 0.7. 

Therefore, for a given set of profiles for the 
velocity and stagnation enthalpy, the integral 

t The analysis can still be applied in a region of 
relatively large Mach number if the pressure gradient is 
small. 

thicknesses can be obtained in terms of the un- 
known coefficients. These coefficients are then 
determined as a function of the surface co- 
ordinate x from the integral form of the basic 
equations. If, as is generally the case, there are 
more than two independent coefficients in the 
velocity and enthalpy profiles, additional 
equations must be supplied to determine 
these quantities as functions of x. Various 
methods of obtaining these additional equations 
have been used in previous analyses. If the 
boundary-layer equations in partial differential 
form are successively differentiated with respect 
to y and evaluated at the wall, there result 
ordinary differential equations. These can be 
used to relate the x-wise variation of the 
additional parameters in the profiles. Alterna- 
tively (cf. [21]), the boundary-layer equations 
can be multiplied by P or by yn and integrated 
from zero to infinity to form additional integral 
conditions. An analysis using the velocity as the 
multiplying factor has been carried out in [21], 
indicating, in general, a closer approximation 
to the exact solutions than those in which only 
thevon Karman integral relationwasused. White- 
head [22] suggests another possible method for 
obtaining additional equations. This is achieved 
by the successive integration of the momentum 
equation. For an incompressible fluid, this 
reduces to the equation resulting from the multi- 
plication by the normal co-ordinate and 
subsequent integration when combined with the 
von Karman integral relation. Thus it is seen to be 
analogous to an equation expressing the change 
in the moment of momentum in the boundary 
layer with respect to the surface co-ordinate of 
the body. 

In considering the profiles for the downstream 
region, the matching conditions at the junction 
of the porous surface and impermeable surface 
must be investigated. As discussed in [6], at this 
edge the boundary-layer equations are invalid 
inasmuch as the x-wise derivatives at the surface 
are infinite. However, certain integral properties 
of the boundary layer are usually made con- 
tinuous at this station under the physically 
attractive assumption that within several 
boundary-layer thicknesses the boundary-layer 
approximations are again valid. The questionable 
validity of the boundary-layer equations at the 
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edge of a porous region can be inferred from the 
experimental results of [23], in conjunction with 
the theoretical results of [4]. In the latter, the 
boundary-layer thicknesses and profiles at the 
edge of the injection region imply zero heat 
transfer on the porous section. The shadow- 
graphs in [23] indicate a region of large density 
variation in the direction normal to the surface. 
This is explicable in terms of the profiles of [4], 
and indicates roughly the boundary-layer thick- 
ness. It should be noted that in a downstream 
distance of approximately two boundary-layer 
thicknesses the heat transfer determined experi- 
mentally is found to be relatively large. Such a 
large x-wise gradient would not appear to be 
consistent with the boundary-layer approxima- 
tions. 

Consider now the previous literature with 
respect to the matching conditions. In [7] the 
boundary-layer thickness and slope and 
curvature of the velocity profile at the wall are 
made continuous at the surface junction. Ref. 
[6] allows a discontinuity in the wall shear stress 
but specifies a continuous boundary-layer thick- 
ness as well as total mass, momentum and 
energy in the layer. In the finite difference 
analysis of [5], it is unnecessary to apply any of 
these assumptions explicitly. Those that are 
directly related to the differential equations 
(e.g. the wall curvature of the velocity profile) 
are obtained inherently as a result of the 
analysis. The results indicate that the skin 
friction and heat transfer permitted discon- 
tinuities at the interface (as stated, the dis- 
continuous heat transfer results from the fluid 
motion and disregards the physical phenomenon 
of conduction within the body). In the present 
analysis the junction was treated in a manner 
similar to that of [6]. The specification of the 
continuity of mass, momentum, energy and 
boundary-layer thickness requires four in- 
dependent parameters to be introduced into 
the velocity and enthalpy profiles. Moreover, in 
order to permit specification of arbitrary initial 
conditions, these must be governed by two 
differential equations in addition to the usual 
von Karman integral relations [equations (1) 
and (2)]. 

The profiles used in this analysis, therefore, 
become 

(7) 

The profiles involve four functions of the 
independent variable x, namely, A, K,, K, and 
K,. All derivatives of the profiles vanish at 
infinity; thus it is not necessary to include the 
large number of terms usually required in 
polynomial profiles to satisfy these conditions. 
It is also of interest to note that the effective 
thicknesses of the velocity and thermal layers 
can be different with no difficulty; this is in 
contradistinction to the difficulties encountered 
with’polynomial profiles if different thicknesses 
are employed in the two layers. For a Prandtl 
number of unity and zero pressure gradient, the 
parameters in equations (7) and (8) can be 
related by the Crocco integral; for all other 
cases they are independent quantities and must 
be determined from the differential equations. 

With the profiles of equations (7) and (8). the 
integral thicknesses are readily obtained and 
result in the following: 

9 = /V/2, (9) 

6” = X[W- Kl - (1 - W)(K, + 2K,)], (IO) 

Q = h(1 - W) [a, + 112 K, + a3 KJ. (11) 

Consider in detail the matching conditions 
which result in the initial values of X, Kl. K2 and 

KS. 
The mass flow in the boundary layer can be 

obtained by integrating pu across the layer. 
As a result of the use of exponential profiles, 
however, the range of integration is infinite, 
resulting in an infinite mass flow. It can be 
shown that if the difference in the mass in a 
layer of uniform velocity and density and the 
actual mass in the boundary layer is considered, 
a finite value is obtained which is proportional 
to the displacement thickness. The corresponding 
difference in momentum is proportional to 9 and 
the difference in energy is proportional to Q. 
From this it is seen that if the mass, momentum 
and energy in the boundary layer are to be 
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continuous, all three integral thicknesses must 
be continuous at the interface. 

The boundary-layer thickness can be made 
continuous by specifying a value of U/U~ at the 
outer edge, since, for the exponential profiles, the 
velocity ratio is unity only at an infinite distance 
from the wall. In the present analysis, since the 
velocity profile is not expected to be monotonic 
in all cases, the boundary-layer edge is defined 
as the point at which 

I I 1 - ;; 6 = 0.02. (12) 

For those cases in which velocity overshoot 
occurs, the above relation is understood to 
designate the outermost point satisfied by the 
equality. The boundary-layer thickness at the 
junction thus provides a relation between K1 
and h which, when used in conjunction with the 
integral thicknesses, determines the initial values 
for all the parameters. Therefore, with known 
profiles at the termination of the porous region 
(as obtained from [4], for example) the initial 
values of the variable coefficients in the velocity 
and enthalpy profiles can be determined. For 
the extremely large rates of injection of interest 
in the present analysis, however, it was found 
that it was not possible to satisfy the conditions 
simultaneously on the bounda~-layer thickness 
and the integral thicknesses. This is a result of 
two separate effects; firstly, the large injection 
rates increase the boundary-layer thickness and 
integral thicknesses by a few orders of magnitude 
with respect to the zero injection values; and 
secondly, the relatively simple profiles used in 
the present analysis have only a limited flexibility 
with respect to variation of the profile para- 
meters. The combination of these effects made 
it possible to satisfy all the aforementioned 
matching conditions only at very small injection 
rates. 

factor. The other matching conditions are then 
determined from ratios of the integral thick- 
nesses, which are independent of the boundary- 
layer thickness. These ratios are the form factor, 
HC = &*,I@, and shape factor, A = Q/t?. This 
system appears to be more reasonable than the 
alternate method of satisfying the integral 
thicknesses and not the boundary-layer thick- 
ness. Examination of the momentum thickness 
[equation (9)], for example, indicates the 
dependence of 0 on two quantities, X and I’, 
where h is proportional to the boundary-layer 
thickness and I’ is a quadratic function of the 
coefficient Kl. For real values of k;, therefore, 
I’ has an upper bound. This limitation in the 
variation of r restricts the values of 0 attainable 
for a given A. Similar reasoning applies to 6* and 
fz, wherein the terms in.the brackets [equations 
(10) and (1 l)] can vary only within specified limits. 
In order to insure that the same matching 
conditions can be applied for any combination 
of integral thicknesses, the form factor and shape 
factor are utilized. The variation of these para- 
meters with injection rate is considerably less 
than the corresponding variation in integral 
thicknesses, since the effect of the large change 
in boundary-layer thickness is removed. The 
boundary-layer thickness itself is correctly 
represented since it is matched, independent of 
the other thicknesses. 

The number of matching conditions, therefore, 
is reduced to three, and only three differential 
equations are necessary. The fourth variable is 
determined by satisfying the energy equation? 
evaluated at the wall. This results in the 
following : 

which reduces to a relation between the para- 
meters in the enthalpy profile (K3 and KZ) when 
-- 

For the results presented herein, a different 
method was used to determine the initial values. 
It was found that either the integral thicknesses 
or the boundary-layer thickness could be 
matched at the high injection rates, but not both. 
The boundary-layer thickness was chosen as the 
more desirable matching condition, since all the 
integral thicknesses include it as a multiplying tnus employee rOr the rourm equar,on. 

t The equation usually utilized in this connection is 
the momentum equation; however, the same difficulties 
arise in attempting to satisfy this relation as in the 
matching conditions at the junction. The energy equation 
evaluated at the surface leads to consistent results and is . ‘ .^ . ^ . 
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either D = 1 or (uZ/&,) 4 1. In terms of these 
variables 

KZ = K, _ 0.5 _ (1: ~$~._‘“)(, _ &)2. (13) 

Consider now the derivation of the remaining 
differential equation. The basic form of the 
momentum equation is integrated as in the von 
Karman integral approach. In this case, however, 
the upper limit is left in terms of the normal 
co-ordinate y instead of being infinite. After 
integrating by parts and regrouping terms, the 
following equation is obtained : 

(14) 
If there are defined new functions analogous to 
the displacement and momentum thickness in 
form but with their dependence on the trans- 
formed variable t retained, equation (14) 
becomes 

1 d 
I- dx [pep&r@] + ,P~cL~~~~G@* - w-a&~32 

= CL # [C(ut)w - Cut] (15) 

where 

@ _t j;zedt - j: t;)‘dt (16) 

tu 
Qi* = 

j 

t 11s 
rdt-E -dt (17) 

0 & ue j 0 & 

s tl.t 
7= -- dt. 

0 ue (18) 

Now, if equation (15) is integrated from t = 0 
to cc, there results 

J 
cc - m.zt dt = 
0 

he 
s 

; [(cqt)w - Cntl dt 

(19) 

where 

#=J,” @dt (20) 

#* _ ]p @* dt (21) 

B = $*I$. (22) 

The new thickness $J thus becomes equivalent 
to the moment of momentum in the trans- 
formed plane, x, t. As pointed out by Whitehead 
[22] for an incompressible flow, 4 represents 
the actual moment of momentum in the 
boundary layer and equation (19) is identical to 
that obtained if the original momentum equation 
were multiplied by the J’ co-ordinate and 
integrated directly. The quantity p was intro- 
duced as a modified form factor. The final equa- 
tion in this form bears a resemblance to the von 
Karman integral relation [equation (l)], except 
for the addition of one term. In performing the 
required integrations to obtain #, #*, etc., it is 
noted that certain terms in the expressions 
diverge when evaluated at the upper limit of 
integration. If, however, these terms are grouped 
together, it will be observed that they disappear 
identically if the von Karman integral relation is 
satisfied. It should also be noted that in the 
integral on the right-hand side of the equation. 
(the product of the density-viscosity ratio and 
the normal velocity derivative) can be integrated 
in closed form only if n ::= 1.0. Since the value 
of n was set equal to 0.7 to be consistent with 
the results of [4], this integral was evaluated 
numerically in each step of the x-wise integration 
along the surface by using the values of the 
dependent variables existing at the preceding 
value of x. Owing to the relatively small x-wise 
variation of the variables K,, K, and K3 for the 
step size utilized, this method gives an accurate 
representation of this integral. 

Using the profiles given by equations (7) and 
(8), therefore, one obtains the following 
dimensional equation from equation (19) : 

$(X2, + fygl =;{[a. -4a, 
i 

- (1 - W)(l + 2K, + 6K,)] d+ In z? 
i 

- 2a, $ In (@ii) - 

non- 

(23) 
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The von K&man integral relations for the 
momentum and the energy equations can also 
be reduced to a similar form and result in the 
following set of differential equations: 

- 2 d+ In (@tt) -2(H,+2)diInG , 
1 

(24) 

A complete set of equations now exists for the 
dete~ination of the boundary-layer charac- 
teristics downstream of a mass-transfer region. 
Equations(23-2S)represent a set of sim~taneous, 
first-order differential equations in the variables 
K,, KS and h. The initial values of these para- 
meters are specified by the aforementioned 
conditions on the contin~ty of boundary-layer 
thickness, form factor and shape factor. The 
additional parameter in the enthalpy profile iu, 
is related to the above variables by the energy 
equation evaluated at the wall [equation (13)]. 
Therefore, the equations can be solved by 
n~erical integration by utilizing the method 
of [19] with the appropriate initial values. This 
integration was performed on the Bendix G-15 
digital computer. Immediately downstream of 
the junction the step size used was extremely 
small (& = O+Ol) owing to the large variation in 
bo~dary-layer characteristics that occurs there. 
This was increased gradually to a step size of 
0.1 on the cylindrical portion of the body. 

III. NUMERICAL CO~UTA~~NS AND 
DISCUSSION OF RESULTS 

As stated previously, the solution for a 
completely irn~~~ble body was determined 
first to establish the applicability of the method. 
The analysis is now divided into two parts. The 
sta~ation-point solution, which degenerates to 
the problem of four simultaneous algebraic 
equations, and the downstream region for which 
the differential equations must be solved. The 
heat-transfer results are presented in terms of a 

Nusselt number and Reynolds number based on 
sta~ation conditions evaluated behind the 
normal shock. The form of this heat-transfer 
parameter permits extrapolation of the results 
over a wide range of sta~ation temperature 
and pressure (cf. [23J). 

Consider first the stagnation-point solution; 
there, the rate of change of all the integral 
thicknesses is equal to zero, resulting in the 
vanishing of the x-wise derivatives of the 
dependent variables. Therefore, the left-lland 
side of equations (23-25) drops out. The 
derivatives remaining in the right-hand side of 
these expressions can be evaluated directly, 
since in the stagnation region of a blunt body 
the velocity external to the boundary layer is a 
linear function of the surface co-ordinate and the 
radius can be replaced by the surface co-ordinate. 
The non-dimensional velocity gradient is given 
by 

for a Newtonian pressure distribution. Therefore, 
equations (23-25) are reduced to algebraic 
equations which, in conjunction with equation 
(13), can be solved numerically for the four 
dependent variables. The results of the solution 
of this set of equations is presented in Fig. 1. 
For the Nusselt and Reynolds numbers defined 

the heat-transfer parameter in terms of the non- 
dimensional quantities enumerated above be- 
comes 

XV, W=-r(l - iir,) 
- p_---. 

G - Q?s$ 

This parameter is plotted in Fig, 1 as a function 
of the ratio of wall to stagnation enthalpy. Also 
included for comparison are the integral- 
method results of [12], the cold-wall solution of 
191 and the more accurate results of [IS]. It is 
readily seen that the present analysis compares 
favorably with the results of [15] for W > 0.3, 
while for a low wall tem~ra~re the two 
results diverge rapidly. At first glance this 
appears to be a major deficiency in the present 
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method; however, if the results are compared 
on a different basis the importance of this 
deviation appears to be slight. 

The surface distribution of heat transfer with 
no injection was then obtained by utilizing the 
stagnation point values of the variables, Kl, 
K,, K3 and A as initial values in the differential 
equations (23-25) governing the flow over the 
surface. The external flow properties were 
obtained from the experimentally determined 
pressure distribution of [23]. This corresponds 
to the flow at a free-stream Mach number of 
6.0 over a hemisphere cylinder. The pressure 
distribution utilized is plotted in Fig. 2 as a 
function of the non-dimensional surface co- 
ordinate S. Various values of the wall enthalpy 
ratio were chosen, the maximum being 1.35 for 
the heated-wall condition and the minimum 
being 0.1 which corresponds to the cold-wall 
case. These distributions are presented in Fig. 3 
and compared with the cold-wall prediction of 
[9]. Since it has already been established that the 
stagnation-point value is not too accurate at 
low surface temperatures, the heat-transfer 
distributions are normalized with respect to the 
stagnation-point value. It is evident from Fig. 3 
that the distribution is predicted fairly accurately 
even though the stagnation-point value is in 
error. It should also be noted that the predicted 
effect of wall temperature on the heat-transfer 
distribution is extremely small; this is sub- 
stantiated by the experimental results of [17], 
for example, where values of W as high as 0.85 
were obtained in the tests. 

The downstream influence of mass transfer 
was then treated for the conditions correspond- 
ing to the experimental results of [23]. Therein, 
the injection region terminated at .% = O-167 
and the ratio of wall to stagnation enthalpy W 
was equal to an average value of 0.35. The ratio 
of coolant to stagnation temperature 8, was 
also approximately 0.35 in all the tests. In order 
to determine the initial values of the dependent 
variables, the boundary-layer thickness and 
integral thicknesses were obtained from the 
integral-method solution of [4]. These values 
are presented as a function of the non-dimen- 
sional injection parameter ( -fW). The similarity 
parameter (NJ permitting extrapolation of the 
heat-transfer results of a downstream-influence 

problem was obtained in [23] and is related to 
the mass-transfer rate by 

Nl c R-my& = 2:+~); (1 - cos _c~)(-f,.). (27) 
OPS~NR~ 

Therefore, for a specified injection region, 0, 
and W, the thicknesses can be obtained for any 
value of N,. The initial values of the variables 
K,, K,, K, and h are then obtained from the 
simultaneous solution of the algebraic equations 
(9-13). The results of the integration of the 
differential equations with the appropriate 
initial conditions are shown in Fig. 4 for 
B?,, = 0.35, W = 0.35, and .?i = 0.167. There is 
obtained a large increase in heat transfer in the 
x-wise direction from .U = fi and a peak local- 
heat transfer which decreases and moves down- 
stream as the injection rate increases. This 
behavior is in qualitative agreement with the 
results of [23]. It should also be noted that 
there is a discontinuity in the heat-transfer rate 
at Si (zero heat transfer is obtained on the 
porous region, from [4], for the high rates of 
injection considered here). This result was also 
obtained in the finite difference solution of [5]. 
In order to compare quantitatively these results 
with the experimental data of [23], it is more 
convenient to present the variation of heat 
transfer with mass transfer for a given surface 
location. This is shown in Fig. 5 for surface 
locations at which thermocouple data were 
available. As noted previously in the stagnation- 
point solution, there is a discrepancy in the heat- 
transfer level; however, the variation with mass 
transfer is predicted reasonably well. 

Since the zero-injection, heat-transfer distri- 
bution is predicted fairly well by the present 
theory, and the effect of mass injection is also 
reasonably accurate, this suggests a method for 
determining the downstream influence of mass 
transfer. It consists of multiplying the heat- 
transfer rates, obtained from the present analysis, 
by the ratio of the stagnation-point prediction 
of [15] and the zero-injection stagnation-point 
value of the present analysis. This procedure 
provides a correction for the relatively inaccurate 
values of the stagnation-point heat transfer 
resulting at low wall temperatures. 

To determine the effect of coolant temperature 
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on the heat-transfer characteristics, a calculation 
was performed with the same values of Z’t and 
W but with different &. The results for 6, equal 
to 0.10 and O-65 are presented in Figs. 6 (a) and 
(b), respectively. Comparison of these results with 
those of Fig. 4, 8, = 0.35, indicates that the 
peak heat rate is decreased and moves down- 
stream as the coolant temperature is decreased. 
This has the same effect as increasing the mass- 
transfer rate; for example, approximately the 
same heat-transfer distribution results from 
N1 = 10 and BW = 065 as from N1 = 4 and 
8, = 0.1. Both of these cases correspond to 
the same impermeable surface temperature 
(W = 0.35). 

The extent of the injection region can be 
varied by changing the value of Z:t. In addition 
to the model in which the porous region ex- 
tended over a semivertex angle of approximately 
9.5” (.% =:= O-167), there were also computed 
distributions corresponding to angles of approxi- 
mately 20” (.% = O-35) and 29” (& = 0*50). 
These distributions are presented in Figs. 7 (a) 
and (b), respectively. It is evident that increasing 
the spatial extent of the injection region results 
in lower-peak heat-transfer rates as well as 
decreased over-all heat transfer to the surface. 
It should be noted that the over-all heat transfer 
is effected not only by the distribution for 
2 > fi, but is also due to the fact that for the 
relatively large injection rates considered, the 
heat transfer to the porous region is identically 
zero. A parameter that has been previously 
used (cf. [23]) to evaluate the over-all effective- 
ness of a given mass-transfer system is the 
effective enthalpy. This is denoted by Q and is 
defined as 

Q = ic 1; (en, = o - qmJ dA. (28) 

In terms of the non-dimensional, similarity 
parameters used herein, one obtains 

The effective enthalpy has been computed for 
the conditions presented in Figs. 4, 6 and 7 and 

is presented in Figs. S(a) and (b). Fig. S(a) 
indicates the variation of effective enthalpy with 
coolant temperature, and Fig. 8(b) shows the 
effect of varying the injection area. It is seen that 
for the particular case when W = 0.35 it is more 
advantageous to inject a very low-temperature 
fluid over a relatively small area than a fluid at 
the same temperature as the impermeable 
surface over a relatively large area. Both the 
total heat absorbed and the peak heating value 
are reduced for the same N,, for example, if 
ew = O-1 and X4 = 0.167 compared with 
B, = 0.65 and & = 0.50. As the impermeable 
surface temperature is decreased, however, the 
relative merits of decreasing the coolant tem- 
perature versus extending the injection region 
may be altered. 

IV. CONCLUSIONS 

The integral method has been applied to 
determine the downstream influence of mass 
transfer in the stagnation region of a blunt body. 
The analysis is performed utilizing exponential 
profiles for the velocity and stagnation enthalpy 
in the boundary layer. For the completely 
impermeable surface, results are obtained for 
both the “cold wall” condition and for a value 
of the ratio of wall to stagnation enthalpy 
greater than unity. The “cold wall” results are 
found to compare extremely well with those of 
[9]. The surface heat-transfer distribution was 
found to be practically unaffected by the 
variation in wall temperature; this has also been 
substantiated by experimental results. 

For the analysis of the downstream effects, it 
was found that the specification of continuity of 
boundary-layer thickness, form factor and shape 
factor at the junction of the permeable and im- 
permeable surface leads to consistent results 
over a wide range of mass-transfer rates and 
coolant temperatures. This specification pro- 
vides the initial conditions for the three 
differential equations. The complete set of 
equations is solved numeri~lly for various 
injection rates, coolant temperatures and in- 
jection areas. The profilest resulting from this 
.___- .._.~ -___ 

I The computed values of Kl vary between 0.3 and f-0 
for al1 the cases presented; examination of the assumed 
velocity profile indicates that positive values of Kl corre- 
spond to W&,,, 
non-monotonic. 

> 1-O; thus, the resulting profiles are 
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analysis are found to exhibit the same behavior 
as indicated in [ll], in which a non-monotonic 
variation of velocity in the boundary layer was 
obtained. In contradistinction to the analysis 
of [ll], however, no singularities occur in the 
present solutions. 

The results of the present analysis under- 
estimate the heat-transfer rates for low wall 
temperature and overestimate them for high 
wall temperatures (W > 0.5). The surface 
distribution of heat transfer for zero injection is 
predicted extremely well when normalized with 
respect to the stagnation-point value; similarly, 
the mass-transfer effects are predicted reason- 
ably well when normalized with respect to the 
local zero-injection heat rate. 

It was found, for the same total mass injected 
into the boundary layer, that either increasing 
the injection area or decreasing the coolant 
temperature results in lower-peak heat-transfer 
rates and a decrease in the total heat absorbed 
by the body. 
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R&urn&La mCthode inttgrale est appliqute pour dCterminer l’influence aval d’un transport de masse 
homogtne dans la rkgion d’arr&t d’un corps de revolution Bmousse place dans les conditions d’un vol 
hypersonique. On utilise les profils exponentiels pour essayer d’Climiner les singularit& qui se sont 
&Cl&s dans les etudes pr&&ientes avec les profils en forme de polynomes. L’Ctude est amCliot$e par 
l’introduction d’une Cquation diffkrentielle suppldmentaire, obtenue par une seconde intkgration de 
1’8quation de quantite de mouvement. Quand on utilise cette dernikre avec les relations intCgrales de 
Kgrrnan pour 1’6nergie et la quantite de mouvement, il en resulte des Cquations diff&entielles du premier 
ordre que l’on rksoud par des m&hodes numeriques sur une calculatrice. Les conditions d’CgalitC g la 
limite de la surface permkable-impermkable fournissent les conditions initiales pour I’intkgration. 

Les rCsultats indiquent que les singularit& qui interviennent dans l’application de la methode 
integrale utilisant des profils en forme de polynomes n’apparaissent pas dans cette ttude. Les taux de 
transfert de chaleur obtenus sont cornpar& au donnCes expCrimentales et l’on trouve qu’ ils traduisent 
assez bien l’influence aval d’une injection de masse. L’effet, sur les taux de transfert de chaleur, de la 
variation de tempkrature du refroidisseur et de la surface d’injection est Cgalement BtudiC. On trouve 
que la diminution de la tempkrature du refroidisseur ou l’accroissement de la surface d’injection se 
traduit par une diminution du flux de chaleur maximum et de la chaleur totale transmise au corps. 

Zusammenfassung-Mit Hilfe der Integralmethode liess sich der Einfluss des homogenen Stoffiiber- 
ganges im Staubereich eines stumpfen, achssymmetrischen Kijrpers bei Hyperschallgeschwindigkeit 
auf stromabwlrts auftretende Vorggnge bestimmen. Urn die bei Polynomprofilen friiherer Analysen 
auftretenden Singularitlten zu vermeiden, wurden versuchsweise Exponentialprofile verwendet. Die 
Analyse erfolgte mit einer zusgtzlichen Differentialgleichung, die sich aus der zweiten Integration der 
Bewegungsgleichung ergab. In Verbindung mit den Kgrmanschen Integralbeziehungen fiir die Bewe- 
gungs- und Energiegleichungen ergibt sich ein System von Differentialgleichungen erster Ordnung, 
das auf einer Digitalrechenmaschine numerisch l&bar ist. iibereinstimmende Bedingungen an der 
Grenze durchllssige-undurchllssige OberflIche liefern die Anfangsbedingungen fiir die Integration. 

Die Ergebnisse zeigen, dass die mit Polynomprofilen bei der Integralmethode auftretenden Singu- 
laritlten in der hier durchgefiihrten Analyse nicht in Erscheinung treten. Die ermittelten Daten fiir 
den WBrmetibergang werden mit experimentellen Ergebnissen verglichen und ermiiglichen verhllt- 
nismPssig gute Aussagen iiber stromabwarts auftretende Effekte bei Stoffzugabe. Der Einfluss ver- 
schiedener Kiihlmitteltemperaturen und Stoffzugabefl3chen auf den WBrmeiibergang wurde ebenfalls 
untersucht. Eine Verkleinerung der Kiihlmitteltemperatur oder Vergrijsserung der Zugabefliche 
fiihrt zu einer Abnahme der Wgrmeiibergangsspitzen und der dem Kkper insgesamt zugefiihrten 

Wgrmemenge. 

AHHOT~QHJI-B CTaTbe IIpHMeHHeTCH IIIfTerpaJIbHbIti MeTO;l fiJIH OlIpe~e.?eHEIfI B.?EIHlf&ffl 

O~HOpO~HOrO IIepeHOCa MaCCbI B OKpeCTHOCTA Kp~fTII~feCKOti TOqKIf OCeCHMMeTpR'fHOrO TCjIa 

cTy~OtHOCOBO~~aCTbIOByC~OBHRXr~~ep3ByKOBOrO~O~eTa.~p~H~i~3eTC~ 3KCIIOH’3HI~Manl- 

HbIfi IIpO@fJIb )JJIR yqeTa HeKOTOpbIX OCO6eHHOCTefi, B03IfLIKUIEIX B npe;ZbIRyIuEfX peIUeHIiRX, 

ItorAa IICIIOJIb30BaJII4Cb IIOJIHHOMHaJIbHbIe IIpO@IJIR. kiaJIkI3 BbIIIOZIHeH IIyTeM BbIBOAa 

~OnoJIHATeJIbHOrO ~~~@epeK~~anbHoro ypaBHeHwf, nonyseHHor0 BT0pxq~bIM sfHTerpMposa- 

KHex ypaBHeH&fR KOJlWfeCTBa ~BMweHHFI. 3TO ypaBHeHMe BMeCTe C HHTerpaJIbHbIMxf CO- 

OTHOIIIeHIIRMH KapMaHaAJIH ypaBHeHWf KOJIH'feCTBB KOJIWfeCTBa ABIlHteHPiR 12 3HeprZfIf AaeT 

CifCTeMy nm#@epeH4Hanbnbrx ypasweH& nepBor0 nopxi[Ka, IzoTopbIe pemaroTcn YncneAHo 
Ha I&IPOBOM weTHo-pemaIoueM npn6ope.Ycno~Hn Ha rpaHwe npoHwaeMoti EI HenpoIfEr- 

UaeMofi IlOBepXHOCTeti RBJIRIOTCR HaZIaJIbHhIMH yCJIOBHffMP3 AJIFf EfHTerpLfpOBaHHfl. 

~e3yJIbTaTbIIIOKa3bIBEUOT,~ITO B ,I(aHHOMaHaJTIUe He BO3HHKBIOT Te OCO6eHHOCTIf, IiOTOpbIe 
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llOJryYafOTCZ=f IlpEf lTpPfMeHeHllK I'iHTeI'p3JfbNOfO MeTOga C HCflOJfb30BaHlfeM IfOJf~HOMRaJfbHbIX 

npo@fnet. 


